2008年3月20日 星期四

Sciscape科景新聞_20080320_卡西尼號新發現:土衛六泰坦可能有地下海洋!

  卡西尼號利用雷達測量土衛六泰坦(Titan)的地表特徵來推測其自轉速度的變化,找到支持泰坦可能有地下海洋的證據!     

  卡西尼號【註一】在2005年10月至2007年5月間,利用合成孔徑雷達(Synthetic Aperture Radar,SAR)穿透泰坦濃厚且富含甲烷的大氣霧霾所獲得的影像資料,讓科學家們可以辨識泰坦地表的地形特徵(包含湖泊、峽谷以及山脈)、並標定其位置。由於其中有19個區域有超過一次的觀測紀錄,因此研究人員可以比較區域內的地標其前後的雷達觀測資料。他們發現這些地標有系統地位移約30公里,若非有地下海洋存在,很難解釋泰坦的地殼如何能輕易地脫離內部地核、而有此一致的漂移。這項研究成果由John Hopkins大學應用物理實驗室的Ralph Lorenz等人發表在2008年3月21日的「科學」(Science)期刊上。   

  分析這些數據,科學家推算泰坦有0.3度的自轉傾角、自轉的速度比同步自轉(synchronous rotation,永遠以同一面面對土星)每年快了0.36度。然而其自轉速度並非保持不變,因為大氣與泰坦地殼間有角動量的交換,又全球大氣循環方向受到季節變換的影響,因此,泰坦的自轉速度會隨季節而改變。但若沒有地下海洋的存在,轉速的變化會很小甚至是不存在。在觀測期間(2004-2006年)恰好是泰坦北半球的冬天,若卡西尼能夠延長任務十年,觀察到泰坦春天(2009年)及北半球夏天(2016-2017年)【註二】的自轉速度變化,將能夠驗證這個理論。   

  科學家們推測地下海洋大約位在泰坦地表下70公里處,若能確認地下海洋的存在,再加上泰坦的表面富含有機物質,對天文生物學家而言,泰坦儼然成為一個相當具有吸引力的研究目標,它將能幫助我們瞭解有機物質如何能在冰衛星形成,而地下海洋是否為合適生命演化的環境。

【註一】卡西尼-惠更斯(Cassini-Huygens)任務是由美國太空總署(NASA)、歐洲太空總署(ESA)以及義大利太空總署(ASI)所共同合作的一項計畫,於1997年10月15日發射,2004年6月30日進入土星軌道,2004年12月24日釋放惠更斯號探測器,惠更斯號於2005年1月14日登陸土衛六泰坦。卡西尼號是第一艘進入土星軌道研究土星系統(包含土星環及其衛星)的太空船,惠更斯號更是第一艘登陸其他行星的衛星的探測器。

【註二】當星體的自轉軸與公轉太陽時的軌道面有交角時,使得太陽直射在星體表面位置產生變化而帶來四季。四季的變化週期與公轉週期有關。泰坦有0.3度的自轉傾角,並跟隨土星繞太陽公轉,所以泰坦四季更迭的時間與土星大致相同,皆為土星公轉一圈的時間29.46年,和泰坦的自轉週期16天比起來真是久了許多。土星北半球上次的冬天發生在2002年,2009年則是土星北半球的春天,2016-2017年左右則會是北半球的夏天。

原始論文
Ralph D. Lorenz et al., "Titan's Rotation Reveals an Internal Ocean and Changing Zonal Winds", Science, 319, 1649 (2008)
Christophe Sotin & Gabriel Tobie, "Titan's Hidden Ocean", Science, 319, 1629 (2008)
編按:Christophe Sotin 和 Gabriel Tobie 在此篇評論中提到土衛六泰坦有3度的自轉傾角,實為0.3度之誤。

Editor: Seline
轉載自科景網站http://www.sciscape.org/news_detail.php?news_id=2352

新聞來源:ScienceNow
http://news.sciencemag.org/sciencenow/2008/03/20-03.html

2008年3月11日 星期二

拉格朗日點

  拉格朗日點(Lagrange points)是指在兩個互繞質心的大物體的引力作用下,有五個點能使小物體運動時之於兩個大物體的相對位置並無改變,是由義大利及法國的數學家Lagrange 在1772年所發表的論文中為求三體問題的通解所計算出來的,他假設在三體問題中小物體的運動是遵循能量改變最少的軌道(動能-位能),其中他計算出了五個點,分別稱為L1~L5。

  其中L1、L2和L3三個點位在兩個大質量物體的連線上,這三個點是較不穩定的點,如果一個小質量物體在這三個點稍微有位置上的改變,就會失去平衡而離開。而L4、L5這兩個點則是位在與兩大質量天體的連線恰構成一等腰三角形處,這兩個點較為穩定,小質量物體若在這兩個點上稍有移動,並不會脫離,而是繞這個點附近作震盪擺動。

  L1是位在兩個大質量物體的連線上,且位置在兩者之間,這點所受到的重力恰為兩大質量物體對它的重力的差,對日地系統來說,原本位於地球內側的物體會有較地球短的軌道週期,但地球對此物體的重力減弱了太陽對此物體的重力,使的其週期較原本慢,而有了和地球相同的軌道週期,此點是觀察太陽的絕佳位置,像是Solar and Heliospheric Observatory(SOHO)衛星及Advanced Composition Explorer(ACE)就是被放置在日地系統的L1上。

  L2的位置也在兩大質量物體的連線上,且在較小物體的一側,這點所受到的重力恰為兩大質量物體對它的重力的和,對日地系統來說,原本位於地球外側的物體會有較地球長的軌道週期,但地球對此物體的重力加強了太陽對此物體的重力,使的其週期較原本快,而有了和地球相同的軌道週期,此點是設置太空望遠鏡的絕佳位置,因為此點對太陽及地球的指向永遠一樣,容易保護和校正,已發射的Wilkinson Microwave Anisotropy Probe(WMAP)就是位在日地系統的L2上,而將來計畫要發射的Herschel Space Observatory、Gaia probe,和James Webb Space Telescope也預計被放在L2上。

  L3的位置也在兩大質量物體的連線上,且在較大物體的一側,以日地系統為例,此點位在地球軌道稍微外側處,原本應該有較地球長的軌道週期,但因地球和太陽位在此一小物體的同一方向上,使得向心力變得更大,因此有了跟地球相同的軌道週期,許多科幻小說會在L3描繪出一個「反地球」,不過其實這一點處在一個相當不平衡的狀況,因為其他的行星很容易就經過此點附近而對它造成擾動使它離開此點。

  L4和L5在以兩大質量物體連線為底的等邊三角形的第三個頂點上,L4位在較小物體圍繞較大物體運行軌道的前方,L5則是位在較小物體圍繞較大物體運行軌道的後方,其位置會在超前和落後小物體軌道的60度的地方,由於這兩點距離兩個大質量物體的距離相同,它所受此兩物體的重力就會是這兩個物體的質量比,這兩點又被稱作三角拉格朗日點或是特洛依點,在太陽系的系統中我們常可以見到位在L4和L5的例子,最著名的就是位在日木系統的L4和L5的希臘群小行星和特洛依群小行星,甚至是在解釋月球起源的學說中,就有一解釋是在日地系統的L4或L5上,有一顆叫做Theia的行星,在它的軌道失去平衡後,撞上地球因而形成月球。

參考資料:
http://en.wikipedia.org/wiki/Lagrangian_point

特洛依小行星

  特洛依小行星(Trojan Asteroids)指的是位在日木系統中的L4和L5兩點的小行星,其位置分別是在超前和落後木星軌道60度的位置上,和木星有相同的軌道週期。在Lagrange計算出五個Lagrange points的一百多年後,1904年E. E. Barnard首次留下可能是發現特洛依群小行星的紀錄,1906年德國天文學家Max Wolf發現了位在L4的一顆小行星並以588 Achilles(阿基里斯)命名,它在L4附近有著異常的軌道運動,在不久之後,有越來越多的小行星在L4和L5這兩點被發現,並且因著Max Wolf以588 Achilles命名第一顆L4的小行星,後來的天文學家們便以荷馬史詩Iliad中特洛依戰爭的人物們為這兩群小行星命名,其中L4以希臘方的英雄們命名,稱為希臘群(Greek group),而L5則以特洛依方的英雄們命名,稱為特洛依群(Trojan group),但其實也有些錯置的例子。

  至2007年8月為止,在L4和L5分別有640顆及536顆已被編號和539及509顆未被編號的特洛依小行星。2006年UC Berkeley、法國巴黎天文台、夏威夷凱克望遠鏡(Keck Telescope)的天文學家在2月2日的「自然」(Nature)期刊上發表研究,指出他們所發現的第一對特特洛依小行星雙星617 Patroclus和Menoetius,經計算後發現密度極低(0.8g/cm3),因此認為這對小行星的組成應該是表面被塵土覆蓋的冰,性質與海王星軌道外的庫伯帶天體(Kuiper Belt Objects,KBO)非常類似,因此認為特洛依小行星的起源可能與KBO相同。

參考資料:
http://en.wikipedia.org/wiki/Trojan_asteroid#Trojan_asteroids
http://tamweb.tam.gov.tw/news/2006/200602/06020401.htm